viernes, 27 de mayo de 2016

UN GATO VIVO Y MUERTO EN DOS SITIOS AL MISMO TIEMPO

A Erwin Schrödinger su ejemplo del gato en la caja le parecía ridículo

Un gato vivo y muerto en dos sitios al mismo tiempo.


Investigadores de EE UU logran entrelazar grupos de cuatro fotones y mantenerlos estables, un paso necesario para la creación de ordenadores cuánticos

Erwin Schrödinger recibió un Nobel por sus aportaciones a la física, tiene un cráter a su nombre en la cara oculta de la Luna y realizó aportaciones filosóficas fundamentales para la genética. Sin embargo, su nombre es mundialmente conocido por un experimento mental que planteó en 1935 en el que un gato podía estar muerto y vivo al mismo tiempo. En aquel caso creado para ilustrar la extrañeza de la mecánica cuántica, que el físico austriaco calificaba de ridículo, se introducía un gato en una caja de acero junto a una pequeña cantidad de material radiactivo. La cantidad era tan pequeña que solo existía un 50% de posibilidades de que durante la hora siguiente uno de los átomos decayese. Si eso sucedía, se activaría un mecanismo que llenaría la caja de ácido hidrociánico, uno de los gases tóxicos utilizados en las trincheras de la Primera Guerra Mundial, y el gato moriría.
De acuerdo con los principios de la mecánica cuántica, durante el tiempo que durase el experimento, el gato estaría vivo y muerto al mismo tiempo, resultado de un fenómeno conocido como superposición. Sin embargo, esa circunstancia cambiaría cuando abriésemos la caja para acabar con la incertidumbre. En ese momento, de vuelta a la dura e incontrovertible realidad de la física clásica, el gato estaría o vivo o muerto.
Dos partículas entrelazadas lo seguirán estando aunque las separen un millón de kilómetros
Con el tiempo, los científicos han sido capaces de manipular los estados cuánticos de la materia y es posible que en el futuro este conocimiento sirva para construir potentes ordenadores cuánticos. Esta semana, en un artículo que se publica en la revista Science, un equipo de físicos de la Universidad de Yale (EE UU) muestra cómo ha logrado mantener un "gato de Schröedinger" cuántico vivo y muerto en dos lugares a la vez.
En realidad, estos gatos cuánticos son grupos de hasta cuatro fotones con estados entrelazados pese a estar en recipientes separados. El entrelazamiento es un fenómeno cuántico por el que las partículas subatómicas pueden alinear sus estados cuando están en contacto y mantenerlo después separadas, incluso a millones de kilómetros de distancia. El equipo de Yale, liderado por Chen Wang, fue capaz de introducir los fotones en receptáculos separados y modificar su estado, como el gato que está vivo o muerto, observando cómo cambiaban de forma coordinada.
El interés del trabajo, según explica Oriol Romero-Isart, investigador en el Instituto de Física Teórica de la Universidad de Innsbruck (Austria), es que “permite crear dos qbits (sistemas cuánticos que servirían para gestionar la información en ordenadores cuánticos) y aplicar correcciones para que duren más”. La inestabilidad de estos qbits hace que sean poco prácticos para construir máquinas cuánticas y es un reto para producir aplicaciones prácticas con este tipo de física. Normalmente, sin la aplicación de correcciones, un qbit se destruiría en menos de un segundo. Con las correcciones, comenzaría acercándose la posibilidad de emplear el potencial de un sistema en el que las partículas no solo sirven para codificar información a partir de unos y ceros, como en la computación convencional, sino que pueden aprovechar la posibilidad de que estén en varios estados al mismo tiempo.
La capacidad del grupo de Yale para crear “gatos de Schrödinger” de un gran número de fotones es importante porque para corregir los errores que hacen que el qbit se diluya en muy poco tiempo es mejor tener un sistema con muchas piezas. “Si nos imaginamos un sistema que pueda tener varios estados, en el que las partículas son canicas rojas y azules, si solo tienes una canica, cuando cambia el color, pierdes la información. Pero si tengo 100 canicas del mismo color, si solo cambia una de información, podría reparar el error y mantener la información gracias al resto”, explica Romero-Isart.
Los simuladores cuánticos serán una aplicación previa a los potentes ordenadores cuánticos
Las posibilidades que abren estudios como el publicado en Science son enormes, pero la extrañeza cuántica tiene sus límites. Aunque dos partículas entrelazadas seguirán estándolo aunque las mandemos a planetas separados por un millón de kilómetros, este sistema no serviría para transmitir información más rápido que la luz. La física no permite esa herejía y en este caso se conserva el dogma porque no es posible manipular a nuestro antojo el estado de esas partículas entrelazadas.
Entre las aplicaciones prácticas más cercanas de las máquinas cuánticas, Romero-Isart, que ha planteado la posibilidad de realizar un experimento en el que un objeto con millones de átomos esté en dos lugares a la vez, señala la simulación cuántica. “Se trataría de hacer un prototipo, de la misma manera que se hace con modelos de menor tamaño en aviación, para recrear un sistema cuántico muy complejo, como la física de los sólidos”, señala. “Saber cómo interaccionan los electrones en un sólido puede ayudarnos a entender cómo se puede crear un material en el que haya superconductividad a temperatura ambiente”, añade. Ahora, los materiales empleados para conducir la electricidad a temperatura ambiente, como el cobre, producen una enorme resistencia que limita su eficiencia. Este tipo de progresos llegarían antes que los ordenadores cuánticos, una tecnología posible, pero que aún requerirá mucho tiempo para hacerse realidad.
CADA DIA LOS NUEVOS DESCUBRIMIENTOS TECNOLÓGICOS NOS ASOMBRAN MÁS.

No hay comentarios:

Publicar un comentario